

Feature 6

Conditional Probability and Independence

- In this lecture, we will talk about conditional probability.
- The general idea is that the probability of some given event occurring may be different, modulo other information.
- Example: suppose we have a well-shuffled deck of cards, and suppose you have a friend and that friend takes the top card. If you take the second card, what is the probability that it's an ace?
 - ↳ if you know that your friend drew an ace, then the probability is $3/51$.
 - ↳ if not, then the probability is $4/51$.

This is an example
of Conditional
Probability!

When the math concept is taught
in its most basic form in class and
the homework requires extra steps

This just isn't a contingency we've remotely looked at.

We write $P(E|F)$ to mean "the probability that event E occurs assuming that event F has occurred."

In general for $P(F) \neq 0$,

$$P(E|F) = \frac{P(EF)}{P(F)}$$

Ex: Suppose we are rolling two dice, one after the other. What is the probability that the sum of the rolls is greater than 7 given that the first roll is a 3?

Sol'n: Let E = "the sum is greater than 7."
 F = "the first roll is a 3."

$P(F) = \frac{1}{6}$, since each outcome is equally likely and there are 6 sides.

$P(EF) \rightarrow$ for two rolls, there are 36 possible outcomes, 6 of which start with three:
 $(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)$
Only $(3,5)$ and $(3,6)$ sum to greater than 7, so $P(EF) = \frac{2}{36}$.

Hence: $P(E|F) = \frac{2/36}{1/6} = \frac{12}{36} = \frac{1}{3}$.

But note

$$\frac{1}{3} = \frac{2}{6}$$

The sample space is "reduced" to

$$(3,1), (3,2), (3,3), (3,4), \underbrace{(3,5), (3,6)}_{2 \text{ (out of 6)}}$$

i.e. is restricted to \mathcal{F}

since \mathcal{F} has occurred, \mathcal{F} becomes our new sample space the "reduced sample space".

Example: In bridge, 52 cards are

dealt out equally to four players, called East, West, North, and South.

If North and South have a total of 8 spades, what is the probability that East has three of the remaining 5 spades?

Soln: We consider the reduced sample space:

Since N and S have been dealt 26 cards together, among the other 26, there are $\binom{26}{13}$ possible hands for E.

Among those hands, there are

$\binom{5}{3} \binom{21}{10}$ many hands with 3 spades.
↑ ↑
5 spades, rest of hand
choose 3

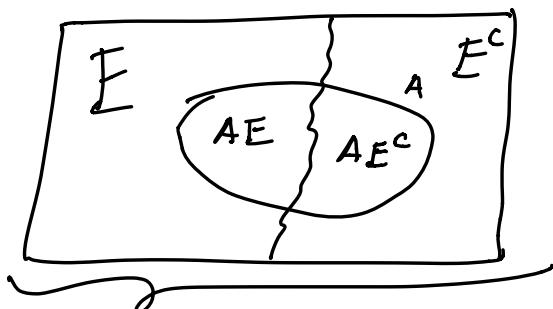
So the prob. is $\frac{\binom{5}{3} \binom{21}{10}}{\binom{26}{13}} \approx 0.339$.

Note that

$$P(E|F) = \frac{P(EF)}{P(F)}$$

so $P(EF) = P(E|F)P(F)$ ← "multiplication rule"

This can be used to give the following convenient tool:



From the picture: $P(A) = P(AE) + P(AE^c)$

So, by the multiplication rule:

$$P(A) = P(AE) + P(AE^c)$$

$$P(A) = P(A|E)P(E) + P(A|E^c)P(E^c)$$

"Law of total probability".

Ex: Given a well shuffled deck of cards, what is the probability that the second card is an ace? Let

E = the first card is an ace.

A = the second card is an ace.

$$P(A) = P(A|E)P(E) + P(A|E^c)P(E^c)$$

$$P(A|E) = \frac{3}{51} \quad P(A|E^c) = \frac{4}{51}$$

$$P(E) = \frac{4}{52} \quad P(E^c) = \frac{48}{52}$$

More generally, if $\{E_i\}_i$ is a partition of S (so $\bigcup E_i = S$ and $E_i \cap E_j = \emptyset \text{ iff } i \neq j$) then

$$P(A) = \sum_i P(A|E_i)P(E_i)$$

"Law of Total probability"

Generalized Multiplication Rule

$$P(E_1, E_2, \dots, E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1, E_2) \dots P(E_n|E_1, \dots, E_{n-1})$$

Ex: A deck of cards is randomly shuffled into 4 piles. What is the probability that each pile has exactly one ace?

sol: We consider the following events:

E_1 = "ace of spades is in any of the piles"

E_2 = "ace of spades and ace of hearts are in different piles"

E_3 = "no aces of spades, hearts, diamonds are all in different piles"

E_4 = "all aces in different piles"

We want $P(E_1, E_2, E_3, E_4)$ and so

$$P(E_1, E_2, E_3, E_4) = P(E_1)P(E_2|E_1)P(E_3|E_1, E_2)P(E_4|E_1, E_2, E_3).$$

$P(E_1) = 1$ since the ace of spades must end up somewhere.

$P(E_2|E_1)$: Consider the pile containing the ace of spades. The probability that the ace of hearts is one of the 12 other cards is $12/51$.

$$\text{So } P(E_2 | E_1) = 1 - \frac{12}{51} = \frac{39}{51}.$$

$P(E_3 | E_1, E_2)$: Consider the two piles containing the aces of hearts and spades.

The probability that ace of diamonds is in one of the two piles is

$$\frac{24}{50}, \text{ So } P(E_3 | E_1, E_2) = 1 - \frac{24}{50} = \frac{26}{50}.$$

$P(E_4 | E_1, E_2, E_3)$: Now we have three piles, each with an ace. The probability that the last ace is in one of the piles is

$$\frac{36}{49}, \text{ So } P(E_4 | E_1, E_2, E_3) = 1 - \frac{36}{49} = \frac{13}{49}$$

$$\text{So } P(E_1, E_2, E_3, E_4) = 1 \cdot \frac{39}{51} \cdot \frac{26}{50} \cdot \frac{13}{49}$$

$$= 0.105.$$